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Abstract 

“lnterpretation ” is a general and interesting Pattern 
Recognition framework in witch a system is considered to 
input object representations, and output the corresponding 
Interpretations in terms of “semantic messages”  
specihing the actions to be carried out as system’s 
responses. Viewed under the Syntactic Pattern recognition 
viewpoint, interpretation reduces to Formal Transduction. 
We propose here an eficient and effective algorithm to 
automatically iger  a jinite state Transducer from a training 
set of input-ourput examples of the Interpretation problem 
considered. The proposed algorithm has been shown to 
identilpy in the limit an important class of transductions 
known as “Subsecuential Transductions.” Experimental 
results are presented showing the performance and 
capabilities of the proposed method. 

1. Introduction 

From a very general point of view, any Pattern 
Recognition (PR) system can be seen as a function that 
take object representations as input and produces, as  
output, adequate interpretations of these objects. Without 
loss of generality, these interpretations can be expressed as 
sentences of an appropriate Semantic Language. From this 
perspective, the classical problem of Classification, witch 
very often IS considered as a paradigmatic problem of PR, 
results just in a very particular case; namely, that in which 
the range of the interpretation function is finite. 

While classification is a well known problem which 
quite naturally fits the traditional decision-theoretic-based 
approach to PR, the interpretation setting has been much 
less studied. Nevertheless; the fact that interpretation 
results can always be expressed as sentences of certain 
language, strongly suggest us that the syntactic approach 
to PR could perhaps be the most appropriate paradigm. 
-______ 
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This paradigm adopts the classical Theory of Formal 
Languages as one of its fundamental frameworks and, 
within this framework, appropriate concepts exist that can 
properly model the above view of interpretation functions. 
To be more specific. a Transducer is a formal device that 
takes structural representations of objects (strings over an 
alphabet) as input and produces, as output, sentences over 
another (semantic) output alphabet. Specially interesting 
because of their applicability to PR are the Finite 
Transducers [l]. 

However, perhaps the main drawback of the Transducer 
approach to PR, is the difficulty of (automatically) 
building such models. Here (like in the case of Languages) 
adequate techniques are needed to inductively learn the 
required (Syntactical) models from training sets of input- 
output examples. However, in contrast with the case of 
Languages, where a certain tradition already exists in 
Grammatical Inference methods [2-4]. only very restrictive 
(sequential) models, such as Mealey or Moore machines, 
andlor rather heuristic approaches seem to have been dealt 

This work deals with the leamibility of an important 
subclass of Rational Transductions within the Gold’s 
paradigm of identification in the limit [lo]. The class 
considered is the class of the Subsecuentiuf Transductions 
which is a subclass of the most general Rational or Finite- 
State Transductions and properly contains the class of 
Sequential Transductions El]. A Sequential Transduction is 
one that preserves the increasing length prefixes of input- 
output strings. While this can be considered as a rather 
“natural property” of transductions, there are many real- 
world situations in which such a strict sequentiality is 
clearly inadmissible. The class of Subsequential 
Transductions comes to make this restriction milder, 
therefore allowing applicability in quite a few interesting 
practical situations. 

The capabilities of subsequential transductions are 
illustrated through a series of experiments which also 
show the high effectiveness of the here proposed learning 
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method to obtain very accurate and compact transducers for 
the corresponding tasks. 

This paper is a preliminary report of a m o r e  
comprehensive work witch is being presented elsewhere 
[ 11-12]. 

2. Mathematical background and notation 

Let X be a finite set or alphabet,*and X* the f ree-  
monoid over X .  For any string x E X  , Ixl denotes the 
length of x and h. is the symbol for the string of length 
zero. For every x,y€X*, xy is the concatenation of x and 
y .  If v is a strinj in X * ,  then X*v (vx')  denotes the set of 
all strings of X that end (begin) w i t  v. Pr(x)  denotes the 
set of pre ixes of x. Given u,v E X , with U E Pr(v2. we 

longest common prefix of all the stnngs of L is denoted as 
W L ) .  

In eneral. a transduction from X* to Y' is a relation t B S ( X  x f). In what follows, only tho:e transductions 
which are part ialfunct ions from X to Y* will be 
considered. A Subsecuential Transducer is defined as a 6- 
tuple t = (Q,X,Y,qg,E,a) .  where Q is a finite set of 
states, qOEQ is the initial stare. E is a finite subset of 
(Q x X x Y ' x  Q )  whose elements are called transitions, 
and a:Q - Y" is a function that assigns output strings to 
the states oft. The partial function r:X* - Y" that is 
realized by t is defined as: 

define U -  f v as u'*v=w o v=uw. Given a set L S X , the 

tfxlx2-xn) = Y I Y ~ - Y ~ P ( ~ )  k7 
lfqOtxl,yl.ql). ( ~ I J ~ . Y ~ J I ~ ) .  (qn-i.xrtYrtqn)I C E- 

By using an additional input symbol "#", not in X. to 
mark the end of the input strings, we can represent the 
function U as a new edge of the form (q,#,y,q')  where 
u(q)=y and q' is a state non necessarily in Q. 

Following e.g. [lo], [3], an appropriate framework for 
the Transducer t;eaming Problem can be stabilised as 
foilows: Let f : ~  - U" a partial recursive function, a 
Transducer Leaming Algorithm A is said to identify f i n  
the limit if. for any (positive) presentation of the input- 
output pairs (graph) off, A converges to a transducer t 
that realizes a function g:X*-+ Y" such that Vx€Dom(fj, 
g(.x) =&x). where Domm denotes the subset of x* wheref 
is defined. 

3. Onward Subsecuential Transducers 

The transducer leaming algorithm to be presented in the 
next section requires some additional new concepts to be 
introduced. An Onward Subsequential Transducer (OST) 
is a subsequential transducer T=(Q,XU{#}.Y,qO,E) such 
that: 

vp€Q-{qol mcp (MU" I @,a,y,qEE)) = k. 

Given an arbitrary subsequential transducer t. an 
equivalent OST t' can be obtained as follows [ lS](fig. 1): 

V ~ Q ,  U w = ~ c p { v ~ Y .  I ( q , a , v , r E a  A w # A &ea 
1: substitute every outgoing transition of 9 : 

2: substitute every ingoing transition of q : 
(9,awtr) fw (q .4 tr )  

( P h Y J 7 )  for @bb;;w,q) 

WO 1 

Fig.1. Building an equivalent Onward Subscqucntid Tramduce1 

The transduction learning algorithm requires a finite 
sample of input-output pairs T C ( X * #  x f) which is 
assumed to be single-valued. Such a sample can be 
properly represented by a 'Tree Subsequential Transducer* 
(TST) t=(Q,XU{#l,Y,qo,E) with Q =U(U#,v,)ETPT(u#). 
qO = h. and V w a E Q ,  (w,a,k,wn)EE, and V(u#,v)ET,  
(U,#, v,u#)€ E. 

Given T, an Onward Tree Subsequential Transducer 
(OTST) representing T can be obtained by building an 
OST equivalent to the TST of T. 

Example 2 :  Let T= { ( O # , l ) ,  (Z# ,Ol) ,  (OO#,ZO), 
(O1#.11). ( l i# ,OOl)} .  The TST and OTST of T are as 
shown in F i g 2  

0) 
Fig 2. Tree Subsequential T d u c e r  TU(?'') (a), and &ward Tne 

Subsequential Transducer OTST(7) (b) 

300 



4. The Transducer Learning Algorithm 

Let TC ( X * #  x U") be a finite single-valued training 
set. The proposed algorithm starts building the OTST of 
T . Z  = (Q,XU{#},Y,qo,E) = OTST(T), and then proceeds 
by orderly trying the merge of states of Z while 
preserving the subsequential, deterministic nature of the 
resulting transducers. For this to be possible, some output 
(sub)strings often need to be "pushed-back" towards the 
leaves of T. The test as to whether a transducer Z is 
subsequential. is assumed to be provided by a hypothetical 
(no cost) procedure "Subseq". 

The merging process requires the states of t to be 
successively taken into account in a lexicographic order of 
the names given to these states through the TST 
construction (Sect.3) [ 181. Let "<" be such an order on Q. 
Jrsr (Q) and lasr  (Q) being the first and last states and 
let next (4)  denote the state which immediately follows q.  
The merging of any two states q'.q E Q, with 4 ' q .  results 
in a new transducer in which the state q no longer exists 
and all the outgoing transitions of q are assigned io 4'. Let 
merge(Z,q',q) represent this merging. 

E Q be a state o f t  and (9',a,w,9) E E (one 00 
its ongoing transition(s). Let w = u v .  Then v can be 
"pushed back" to behind q and distributed throughout all 
the outgoing transitions of 9 as follows: 

Let 

let Z'=push-back (t,v.(q',a,uv,9)). 
Then, E' = (E - { (q ' ,a ,uv ,q) ) )  U C(q'.a,u.q)) U 
{(q,b,vz,r) : (q,b.z,r)EE) 

Al~orlthm OSTIA 
INPUT: Single-valued set of input-output pairs TC (X*#X Y*) 
OUTPUT: OST ?consistent with T 
t := O T S m )  
q:=firsr(t ) 
ahllc q < h!(t ) do 

q:= wxr(r.q); p:= firsflt ) 
whlk  p < q d o  

t*:= t 

merge(T.p.q) 
a h l k  -.subseq(t ) do 

that violate the subseq condition. with s < t 
k t  (r,a.v.s). (r.a.w.0 be two transitions o f t  

IC ((v f w) and (a = #)) or 

U:= mcp(v.w) 
push-back(r. v-lu(r.a.v.s)) 
push-back(t. W ' ' U . ( ~ . ~ , W . S ) )  

merge(t.s,t) 

(s < q and v '$ Prfw)) then cxlt whllc 

end whllc //-.srrbscg(t ) / I  
I1 isubseq(t) then t := t',clse cxlt whlk  
p:= nexr(t,p) 

end aNlc I /  p < q I! 
I1 wubseq(t ) then t := T' 

end ahlk / I  q < fus<t)ll 
end IIOS77AII 

Fig. 3. Thc Transducer Inference Algorithm 

The algorithm that performs the above outlined 
procedures is called the "Onward Subsewntial Transducer 
Inference Algorithm (OSTIA)" and is famally presented in 
Fig. 3 (see [12] for examples d how it works). 

It can be shown that, using this algorithm. the class of 
subsecuential transducers can be identified in the limit 
[111[121. 

5. Experiments 

To illustrate the how this algorithm works with 
complex tasks we present two different groups of 
experiments. In both we have used a series of increasing- 
size random training-sets. each including the previous 
ones. Each set was drawn from a non-uniform distribution 
in witch the lengths of the strings were (approximately) 
equiprobable. The random procedure was prevented from 
generating repeated samples. Every training set was 
submitted to the OSTIA and each resulting Subsequential 
Transducer was used to perform the task with a test set. 

The first problem was to learn to perform integer 
division by seven and the reSt-S+?f consisted of a whole 
range of Integers from 1 to 105-l. The results of this 
experiment appear in fig. 8. The items shown are: (a) the 
test-set error rates, (b) the sizes of the learnt transducers 
and (c) the computing time required for each execution of 
OSTIA, on a -25 mips. conventional RISC Computer 

-.--~noo(s) Dlvlsion by 7 --, 
(Is 9000/35). 

- ... . 

0 
0 200 400 Mx) m lo00 1200 

r&h#M 

Fig. 4. Behaviour of the OSTIA for the Division by w e n  translation 
task 
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A second group of experiments was concerned with the 
more difficult task of translating English writen numbers 
in the O...f&-I range into their corresponding Spanish 
writing. The results appear in fig. 5. withc shows the 
same items as before. 

It is worth noting that, with small training-sets. the 
inferred transducers tend to be rather large and error-prone. 
while both sizes and errors reduce dramatically as enough 
source structure is made available through the training 
data. 

. . *. . E+# 
--Enm(%) Engllsh to Spanlsh -- 

0 zoo0 4Ooo 6ooo enw loooo12m1m 
T n U Y h  

Fig. 5. Behaviour of the OSTIA for the English to Spanish translation 
task 

6. Discussion and Conclusion 

The results of the experiments described in the last 
section clearly indicate both the versatility of 
subsequential transduction and the effectiveness of the 
OSTl Algorithm to learn subsequential transducers from 
training input-output examples. While, for (small) 
training-sets not conveying enough structure of the 
unknown source transduction, the transducers produced by 
OSTIA tend to be rather large and iMCCUf&, very compact 
and exact solutions are always obtained once the training 
data contain a small number of appropriate inputautput 
pairs. The existence of such small sets of appropriate 
training data has been shown through some of the 
experiments reported in [12], and some theoretical results 
regarding what an “appropriate” set of input-output 
training pairs is, are discussed in [ 111. However, the only 

practical hint these results seem to suggest is that such 
training data should contain the “simplest” (usually also 
the shortest) transduction examples, and how to actually 
choose adequate and small sets of training data remains an 
open issue of practical concem. In any case. as the here 
presented experiments suggest, by relying on chance alone 
good results tend to be obtained with reasonable amounts 
of training-pam. 
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